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Abstract. Anytime algorithms allow a practitioner to trade-off runtime for solution quality. This is of particular interest in multiob-
jective optimization since it might be infeasible to identify the Pareto set in a reasonable amount of time. We present a theoretical
model to characterize the trade-off between solution quality, in terms of relative hypervolume, and runtime for exact anytime algo-
rithms for biobjective optimization problems. Our model works under some basic assumptions, such as, Pareto optimal solutions
are collected sequentially and the Pareto front can be well approximated by a quadrant of a particular superellipse. We validate our
model against an anytime algorithm based on the ε-constraint approach for the biobjective unconstrained knapsack problem.

INTRODUCTION

In a multiobjective combinatorial optimization problem, there is usually not a single solution which is optimal under
the notion of Pareto optimality, but rather a set, the so-called Pareto set, that represents the trade-offs between the
conflicting objectives [1]. In this work, we consider biobjective optimization problems with two objective functions

max
x∈X

f (x) = max
x∈X

( f1(x), f2(x)) (1)

where X denotes the set of feasible solutions and “max” is considered under the notion of Pareto optimality. The image
of X in the objective space is denoted by Y = { f (x) | x ∈ X}. For two solutions x, x′ ∈ X we introduce the following
dominance relation: f (x′) < f (x), that is f (x) dominates f (x′), iff fi(x′) ≤ fi(x), i ∈ {1, 2} and f (x′) , f (x). A solution
x ∈ X is said to be Pareto optimal if no other solution x′ ∈ X exists such that f (x) < f (x′). Lastly, the set of all Pareto
optimal solutions is called the Pareto set, and its image in the objective space is called the Pareto front.

Due to the possible intractability of the Pareto set [1], it might be infeasible to identify all solutions in a reasonable
amount of time. As a result, it can be more relevant to seek a representative subset of the Pareto set that satisfies some
interesting properties, such as, cardinality or solution quality guarantees [2]. Anytime algorithms [3] are an appealing
concept for multiobjective optimization since they should, in principle, find improving representative subsets (or
approximations which may contain non-optimal solutions) of the Pareto set at any time of the search process. An
example of such an anytime approach is the ε-constraint technique [1] which collects Pareto optimal solutions by
solving a sequence of constrained single-objective problems. In order to assess the performance of anytime algorithms,
there is the need to relate solution quality, expressed as a subset of the Pareto set, with the time taken to achieve it.
The trade-off between solution quality and runtime is called anytime behavior.

Several quality indicators have been proposed to measure the quality of a Pareto set approximation as a scalar
value [4]. A commonly used indicator is the hypervolume [5], which corresponds to the measure of the multi-
dimensional area dominated by a set of points S ⊆ Y , bounded by a reference point r ∈ R2, that is

H(S ) = λ
({

q ∈ R2 | ∃ s ∈ S : r ≤ q ≤ s
})

(2)
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where λ denotes the Lebesgue measure. For this work, we introduce the notion of hypervolume contribution, which
is the hypervolume contribution of a point t ∈ Y with respect to a set of of points S ⊆ Y and is given by H(t, S ) =

H(S ∪ {t}) − H(S ). Interestingly, the hypervolume increases monotonically with more Pareto optimal solutions and is
maximal when the Pareto set is found [4].

The study of the anytime behavior for multiobjective optimization has recently gotten some attention. In [6],
a hybrid evolution strategy for biobjective optimization is shown to provide a good anytime behavior, measured in
terms of solution quality (hypervolume) achieved after different time budgets in a certain range. In [7], the anytime
behavior of a local search method, measured in terms of hypervolume for the trade-off between solution quality and
runtime, is analyzed. Algorithm components from the original approach are improved and refined in order to achieve
a better anytime behavior. However, up to our knowledge, most studies on anytime multiobjective optimization have
been empirical and focused on heuristics which provide no guarantee on the optimality of the solutions.

In this work, we are particularly interested in characterizing the performance of anytime exact algorithms that
maximize the hypervolume by sequentially collecting Pareto optimal solutions. We study its performance in terms
of the trade-off between runtime and relative hypervolume, that is, the current hypervolume relative to the maximal
hypervolume of the Pareto front. In particular, we propose a theoretical model that estimates this trade-off for biob-
jective optimization under the assumption that the “shape” of the Pareto front can be approximated by a quadrant of
a particular superellipse. The model works by collecting minimal information about the Pareto front, which allows us
to approximate it with a piecewise linear curve. From this curve, we assume an oracle that returns, at each call, a point
that maximizes the hypervolume contribution.

We show that the relation between the number of calls of this oracle (runtime) and the relative hypervolume
value achieved can be expressed by a simple piecewise linear function that depends on a “curvature” parameter of the
piecewise curve. We validate our model against the performance of an “anytime” version of the ε-constraint technique
for the unconstrained biobjective knapsack problem.

A HYPERVOLUME/RUNTIME THEORETICAL MODEL

In this section we present a theoretical model to estimate the trade-off between solution quality and runtime for a
biobjective optimization problem. We assume an oracle that returns, at each call, a point in the objective space that
maximizes the hypervolume contribution. Note that, since the hypervolume is a monotone submodular function [8],
this oracle returns, after i calls, an (1 − 1/e)-approximation to the optimal hypervolume value for i points [9]. For
clarity of exposition we split our model into two parts. First, we define a piecewise linear approximation of the Pareto
front under some assumptions, that is, we assume that the objective values of the lexicographic optimal solutions are
known and that the Pareto front can be well approximated by a certain family of curves. Then, given this piecewise
linear approximation, we are able to derive equations that estimate the relative hypervolume after i calls to the oracle.

In order to estimate the Pareto front as a piecewise linear function, we assume that the Pareto front, scaled down
to the unit square [0, 1]2, can be approximated by the positive quadrant of a particular superellipse centered in the
origin with both semi-diameters of length one, which is given by the following parametric equation (in Cartesian
coordinates)

y1
d + y2

d = 1 (3)

where d > 0 is a parameter that controls the curvature of this particular superellipse and y1, y2 ∈ [0, 1]. Although it is
not expected that the Pareto front is a convex curve, our empirical findings suggest that this gives a good approximation
in practice for many problems with linear sum objective functions. Such superspheres have been studied in [10].

We consider a piecewise linear approximation to this curve by defining a point (p, p), such that p = 2−
1
d , and

the corresponding piecewise linear function in Equation 4. The maximal hypervolume for this approximation with
reference point r = (0, 0) is given by p.

g (y1) =

 p−1
p y1 + 1 , 0 ≤ y1 ≤ p
p

p−1 y1 +
p

1−p , p < y1 ≤ 1
(4)

Let us now define an oracle that collects a sequence of points from the piecewise linear approximation, each of
which providing the largest hypervolume contribution. Let Ci denote the hypervolume contribution of the ith point
returned by the oracle.



Assuming p ≥ 0.5 and a fixed hypervolume reference point r = (0, 0), the first point returned by the oracle
is (p, p), which can be found by maximizing y1 · g(y1). Thus, the initial hypervolume contribution is C1 = p2. The
following point returned by the oracle is calculated by considering the dominated regions that remain uncovered,
which correspond to two identical right triangles with catheti of size 1 − p and p. The point providing the largest
hypervolume contribution for a right triangle with reference point on its right angle, is given by the intersection of
the perpendicular lines that split the catheti in half. Thus, the following two largest hypervolume contributions will be
equal to half the area of the right triangles and given by C2 = C3 = ((1 − p) · p)/4. Furthermore, after excluding the
regions dominated by these points, the remaining uncovered dominated regions are given by four right triangles, each
of which has catheti with half the length of the original right triangles and, consequently, a quarter of the area. Since
C1 is known and, after that, the number of equivalent right triangles grows by powers of two and their area decreases
by a quarter each time, a general equation for Ci at the ith call of the oracle can be obtained as follows

Ci =

 p2 i = 1
(1 − p) · p

4blog2 ic
i ≥ 2

(5)

Let Di = C1 +C2 + · · ·+Ci be the hypervolume of the set of points collected up to the ith call of the oracle. Then,
the relative hypervolume up to the ith call is given by Di/p. Note that, the (relative) hypervolume has a logarithmic rate
of convergence. For the case of p < 0.5, Equation 5 does not hold. However, it is possible to compute the hypervolume
contributions by taking advantage of the remaining dominated areas, which are either triangles or the union of two
triangles. Nonetheless, a more detailed study for p < 0.5 will be considered in a further extension of this work.

EMPIRICAL STUDY

In order to validate our model and its relevance for practical anytime biobjective optimization algorithms, we compare
the relative hypervolume obtained from our theoretical model with a technique that at each step finds a Pareto optimal
solution. More particularly, we consider the ε-constraint [1] that solves a sequence of constrained single-objective
problems by transforming one of the objectives into a constraint. At each step, the right hand side of the constraint is
varied over the range of values of the objective function. In our case, for the first iteration of the ε-constraint, we set
the value of the right hand side of the constraint to p. Then, our approach bisects the intervals [0, p] and [p, 1] which
provides a new right hand side p1 and p2, respectively. This procedure is repeated for each point found until some
termination criterion is met. We expect that, by setting the right hand side values of the constraint with this bisection,
the ε-constraint technique will approximate the behavior of our oracle.

We consider the unconstrained knapsack problem. Formally, given a set of items J, where each item j = 1, . . . , |J|
has a profit p j and weight w j, the unconstrained knapsack problem is defined as

max

 f1 (x) =

|J|∑
j=1

p jx j, f2 (x) = −

|J|∑
j=1

w jx j

 (6)

where x j denotes a binary variable that indicates whether or not item j has been chosen for the knapsack. In order to
be consistent with the theoretical model, we scale the objective functions into the range [0, 1].

In order to determine the value of parameter p required by our model we average the objective values of a Pareto
front point found with a weighted-sum method. We consider the scalarized formulation max w f1(x) + (1−w) f2(x) for
w = 0.5. Let x′ be the optimal solution to the weighted sum and y1 and y2 be the normalized objective values of x′ for
f1 and f2 respectively, then we define p = (y1 + y2)/2.

We validated our model against the ε-constraint approach using a linear programming solver (GNU Linear Pro-
gramming Kit MILP Solver) on multiple problem instances with a variable number of items and correlation between
the items. Figure 1 shows the evolution of relative hypervolume for the first 128 steps of the ε-constraint algorithm
(solid line) and calls to the oracle (dashed line), for three selected instances with |J| = 100 and varying correlation.
The experimental results indicate that our simple model approximates quite well the performance of the ε-constraint
approach as the runtime increases. The largest differences are found only in the first steps since the maximal hyper-
volume of the linear approximation (given by p) is smaller than that of the complete Pareto front (calculated using
an exact approach [11]) for the considered instances. This difference vanishes with increasing correlation between the
objectives since our model can better approximate the Pareto front in those cases (p becomes closer to 0.5). Moreover,
our experiments revealed that different problem sizes do not seem to affect the results.



FIGURE 1. Comparison of the relative hypervolume between the theoretical model and the ε-constraint algorithm

CONCLUSION

In this work, we presented a simple theoretical model to characterize the trade-off between runtime and hypervol-
ume in the context of anytime algorithms for biobjective optimization problems. The experimental results indicate
that the model approximates quite well the performance of an anytime variant of the ε-constraint algorithm for the
unconstrained knapsack problem. Further research consists of developing a more fine-grained model, for instance,
considering more initial points in order to provide a better approximation for the initial steps. Moreover, although the
case of p < 0.5 can be modeled algorithmically, we aim to extend our analytical model for this case. Note that the
runtime to find each Pareto optimal solution with the ε-constraint approach did not change considerably. However, this
may not be true for other algorithmic paradigms, for which a larger variance is expected. For those cases, our model
should consider a different measure of runtime. Finally, an interesting application of our findings is on algorithm
survival analysis [12]. Based on our model it is possible to understand whether an exact approach is taking too much
time to find the next Pareto optimal solution, which may justify a restart or a switch to a different search strategy.
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