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Finding representations for an unconstrained bi-objective
combinatorial optimization problem?

Alexandre D. Jesus · Lúıs Paquete · José

Rui Figueira

Abstract Typically, multi-objective optimization problems give rise to a large num-

ber of optimal solutions. However, this information can be overwhelming to a decision

maker. This article introduces a technique to find a representative subset of optimal so-

lutions, of a given bounded cardinality for an unconstrained bi-objective combinatorial

optimization problem in terms of ε-indicator. This technique extends the Nemhauser-

Ullman algorithm for the knapsack problem and allows to find a representative subset

in a single run. We present a discussion on the representation quality achieved by

this technique, both from a theoretical and numerical perspective, with respect to an

optimal representation.

Keywords Multiobjective Combinatorial Optimization, Representation Problem,

Dynamic Programming

1 Introduction

In this article, we consider a particular unconstrained bi-objective combinatorial opti-

mization problem (UBCOP), which is closely related to the single-objective knapsack

problem. The goal is to select a subset of items whose total profit is maximal and total

weight is minimal [6]. Under the notion of Pareto optimality, it might not exist only

one solution that is optimal, but several efficient solutions, each of which cannot im-

prove the outcome of one objective without deteriorating the outcome of the other one.

However, two levels of difficulty arise in this problem [6]: Finding an efficient solution is
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NP-hard and the total number of efficient solutions is exponential with respect to the

instance size. As the number of efficient solutions may be too large for a decision maker

to choose the most preferable one, procedures that produce succint representations of

this set are of particular interest.

In this article, we extend the algorithm by Nemhauser and Ullman [12], a classical

approach to solve the knapsack problem, to find a “good” representation of the set

of efficient solutions, where the quality of the representation is measured in terms of

ε-indicator, given an upper bound on the representation cardinality. This notion of

representation was initially proposed in Vaz et al. [18] and is closely related to known

approximation results in multiobjective optimization [13].

The technique proposed in this article assumes an a priori definition of targets in

the objective space that, once reached, should provide a reasonable good representation

to the set of efficient solutions. Then, during the run of the algorithm, a pruning step

is applied to discard partial solutions that provably will not contribute to reach the

targets.

The performance of this technique is evaluated in terms of representation quality,

both experimentally and theoretically, and compared with an optimal representation.

As opposed to known approaches in the literature, the technique described in this

article is able to obtain a representation in a single run.

2 Definitions and notation

2.1 An unconstrained bi-objective combinatorial optimization problem

The UBCOP can be stated as follows:

max P (x1, x2, . . . , xn) :=

n∑
i=1

pixi

min W (x1, x2, . . . , xn) :=

n∑
i=1

wixi

(UBCOP)

where xi ∈ {0, 1} are the decision variables, for i = 1, . . . , n, p and w are the coefficients

of such variables in the linear objective functions P and W , respectively; pi ∈ R≥0 and

wi ∈ R≥0 are known as the profit and weight of object xi, respectively.

Let X denote the set of feasible solutions in the decision space. We introduce the

following dominance relation for this problem.

Definition 1 (Dominance) Let x, x′ ∈ X. Then x dominates x′, which is denoted by

(P (x),W (x))∆
(
P (x′),W (x′)

)
, iff P (x) > P (x′) and W (x) 6W (x′) with at least one

strict inequality.

A solution x ∈ X is efficient iff there is no other feasible solution x′ ∈ X such that(
P (x′),W (x′)

)
∆ (P (x),W (x)) and its corresponding image in the objective space is

a nondominated outcome vector. The set of all efficient solutions is called the efficient

set and its image in the objective space, called the nondominated set, is denoted by Y .

Let Z ⊂ R2 denote the image of the feasible set X in the objective space. Let

Z≤ = {z ∈ R2 : z 6 0} denote the negative cone formed by all the possible coordinates

of the negative orthant; Z≤z̄ = z̄ ⊕ Z≤ denote the displaced cone Z≤ at point z̄; Ẑ =

{z ∈ R2 : z ∈ Z≤z̄ for all z̄ ∈ Y } denote the union of Z≤z̄ for all z̄ ∈ Y ; Z = conv(Ẑ)
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denote the convex hull of Ẑ; int(Z) denote the interior of Z; and bd(Z) the boundary of

Z. Set Y is composed by supported non-dominated outcome vectors, those that belong

to Y and are placed in bd(Z), which can easily be computed, for example, by the

approach proposed in [5], and unsupported non-dominated vectors, those that belong

to Y and are located in int(Z).

The Nemhauser-Ullman algorithm is a dynamic programming approach that was

originally proposed to solve the knapsack problem [12] but it can easily be modified

to solve UBCOP as well. The sequential process consists of n stages. At any stage i,

the algorithm generates a set of states Si that corresponds to a subset of the feasible

solutions made up of items belonging exclusively to the first i items, i = 1, . . . , n. A

state s =
(
s1, s2

)
∈ Si represents a solution of profit s1 and weight s2. At each stage

i = 1, . . . , n, the states are generated according to the following recursion:

Si := ND
(
Ti := Si−1 ∪

{(
s1 + pi, s

2 + wi

)
: s ∈ Si−1

})
(1)

with the basis case S0 = {(0, 0)}. Operator ND(·) removes dominated states. Note

that Sn = Y .

The running time of this approach depends on the size of set Si, i = 1, . . . , n.

Although this set can grow exponentially in the worst case, Beier and Vöcking have

shown that it grows only polynomially in the smooth case [2].

2.2 Representation quality

A large number of non-dominated outcome vectors can overwhelm a decision maker.

Therefore, it is important to find good representations of set Y . The ε-indicator cor-

responds to the smallest factor that when multiplied to each element of a set R ⊆ Y ,

every point in the set Y becomes dominated [20]. Although well-known in the context

of performance assessment of heuristics (see Zitzler et al. [21]), it has been only recently

suggested as a representation measure [18]. It can be defined as

E(R, Y ) := max
y∈Y

min
r∈R

ε(r, y) (2)

where

ε(r, y) := max

(
yp + α

rp + α
,
Ŵ − yw + α

Ŵ − rw + α

)
(3)

for a very small α (since (0, 0) is always a non-dominated outcome vector for UBCOP),

where r = (rp, rw), y = (yp, yw) and Ŵ =
∑n
i=1 wi. The problem of finding a repre-

sentation in terms of the ε-indicator can be formalized as finding a subset R∗ ⊆ Y ,

|R∗| 6 k, that minimises E(R, Y ), that is,

R∗ ∈ arg min
R⊆Y
|R|6k

E(R, Y ) (4)

Algorithms to compute an optimal representation, given that Y is known, have

been introduced in Vaz et al. [18].
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2.3 Solution techniques for representation

For many multiobjective combinatorial optimization problems, it is not possible to

obtain set Y in a reasonable amount of time. In that case, it is preferable to find a

representation without computing set Y . However, if finding an element in set Y is

NP-hard, then, finding an element of an optimal representation is NP-hard as well.

This is very often the case in multiobjective combinatorial optimization [17]. For that

reason, some focus has been given on developing algorithms that obtain an approx-

imation to the optimal representation with a certain representation guarantee. The

following approaches solve a sequence of scalarizing problems in order to ensure a

given representation quality.

Sayın [15] proposes a method to find discrete representations for multiobjective

linear problems with coverage guarantees or a target cardinality. Coverage is under-

stood as the minimum distance of the elements in Y to their closest elements in the

representation. The method consists of an iterative process that at every step finds the

point that provides the largest coverage value. It stops when either a given cardinality

or a given coverage value is reached. Sayın and Kouvelis [16] use parametric search over

weights with min-max sub-problems, where the representation guarantee is controlled

by refining an interval between two previously generated non-dominated solutions until

it falls below a specified threshold.

Hamacher et al. [9] propose a method to find a representative subset for bi-objective

discrete optimisation problems with box algorithms. The idea is to start with a box

given by two points that contains all non-dominated outcome vectors. Whenever a

new non-dominated outcome vector is found, the box is split into smaller boxes. The

algorithm stops when a given criterion based on the area of the box is reached. In the

method proposed, there is a guarantee on the maximum cardinality with respect to

the criterion.

Finally, Eusébio et al. [7] propose a method based on branch-and-bound to find a

representation for the bi-objective integer network flow problem. It consists of solving a

sequence of constrained formulations of the original problem, which allows to find a new

non-dominated outcome vector, until the representation has the guaranteed quality.

It should be noted that these approaches provide some form of representation qual-

ity guarantee under certain conditions, but no guarantee on the approximation to the

optimal representation is given. Moreover, these approaches need to solve several prob-

lems until reaching a certain representation quality.

Approximation results in terms of ε-indicator are known[1,4] when the goal is to find

a representation of minimal cardinality, not necessarily containing only non-dominated

outcome vectors.

3 A modified Nemhauser-Ullman algorithm

In the following, we describe a modification of Nemhauser-Ullman algorithm that re-

turns an approximation to the optimal representation for UBCOP, containing only

elements of set Y . It assumes that k weight values, Wj , j = 1, . . . , k, are defined a

priori ; we name these weight values as targets. The representation returned by our

approach consists of a set of at most k states, each of which has the lexicographically

largest profit and smallest weight that satisfies a capacity constraint value defined by
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target Wj , j = 1, . . . , k. More formally, the goal is to find set Rlex

Rlex := { lex
x∈X

(P (x),W (x)) |W (x) 6Wj , j = 1, . . . , k} (5)

where lex denotes the lexicographic operator.

Definition 2 For x ∈ X, we define that x is lexicographically optimal if there is no

x′ ∈ X such that P (x′) > P (x) or (P (x′) = P (x) and W (x′) < W (x)).

Note that an optimal solution to the corresponding knapsack problem for a given

capacity constraint value Wj , j ∈ {1, . . . , k}, may not be lexicographically optimal.

Our approach is based on the Nemhauser-Ullman dynamic programming algorithm,

which allows to find a representation in a single run, as opposed to the methods men-

tioned in Section 2.3, and is able to find a lexicographically optimal solution for each

target Wj , j = 1, . . . , k, if it exists. In addition to the removal of all dominated states at

each iteration i, i = 1, . . . , n, as performed by the operator ND given in the recursive

formula in Eq. (1), it also removes states that provably do not lead to elements in Rlex;

we call pruning step to this additional filtering of set Si. In the following sections, we

introduce the technique in more detail.

3.1 Target definition

In our approach, we consider that targets Wj , j = 1, . . . , k, are equally spaced in the

range (0,
∑n
i=1 wi), that is:

Wj :=
j − 1

k − 1

n∑
i=1

wi (6)

Note that due to the lexicographic operator, set Rlex contains only non-dominated

outcome vectors. However, it may only provide an approximation to the optimal rep-

resentation value. Furthermore, Proposition 1 shows that finding a representation for

a given k may not even be possible.

Proposition 1 There exists an instance for which |Rlex| < k 6 |Y | holds.

Proof Consider an instance with two variables and the following profits and weights:

p1 = w1 = θ and p2 = w2 = 3 − θ, with 0 < θ < 1. Then, set Y = {(0, 0), (θ, θ), (3 −
θ, 3 − θ), (3, 3)}. For k = 4, there exists no efficient solution with total weight in the

range (1, 2); therefore |Rlex| < k 6 |Y |.

3.2 Pruning step

The pruning step is based on the computation of k lower and upper bounds of each

state in Si, i = 1, . . . , n for a sequence of related k knapsack problems with capacity

constraint values Wj , j = 1, . . . , k. For each state s ∈ Si, i = 1, . . . , n, an extension of

s is calculated, whose profit value is a lower bound on the maximum total profit that

can be reached from that state for each constraint Wj . Note that if the lower bound

is sufficiently tight, then the corresponding extension may be a candidate state for the

representation. In addition, the upper bound on the profit value of state s for each

constraint Wj is also computed; if the upper bound is inferior or equal to the profit of
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the candidate element for the representation for every constraint Wj , then state s can

be discarded.

Let Wj be the value of a capacity constraint, j = 1, . . . , k. At stage i = 1, . . . , n,

let eW i
j
(s) = (e1W i

j
(s), e2W i

j
(s)) denote the extension of a state s ∈ Si as follows

eW i
j
(s) :=

s1 +
∑
`∈Li

p`, s
2 +

∑
`∈Li

w`

 (7)

where Li ⊆ {i + 1, . . . , n} such that e2W i
j
(s) 6 Wj . This extension can be obtained

by Dantzig’s greedy algorithm for the knapsack problem[3]. Without loss of generality,

assume that i < ` implies that pi/wi > p`/w`. Equation 7 can be reformulated as

follows

eW i
j
(s) :=

s1 +

c−1∑
`=i+1

p`, s
2 +

c−1∑
`=i+1

w`

 (8)

where c ∈ {i+ 1, . . . , n} denotes the index of the critical variable whose weight cannot

be added to e2W i
j
(s) without breaking the capacity constraint Wj .

For a given constraint Wj , an upper bound uW i
j
(s) on the profit value of a given

state s ∈ Si, i = 1, . . . , n is also given by [3]. Let W (s) = Wj − s2 be the residual

capacity associated to s. Let

c := W (s)−
c−1∑
`=i+1

w` (9)

Thus, given the same ordering of the items, the upper bound is computed as

uW i
j
(s) := s1 +

c−1∑
`=i+1

p` +
[
c
pc
wc

]
(10)

A state s′ ∈ Si can be pruned if, for each j = 1, . . . , k, there exists a state s ∈ Si
such that uW i

j
(s′) 6 e1W i

j
(s). Note that the calculation of the extension and upper

bounds for a given state takes O(n)-time for all capacity constraints Wj , j = 1, . . . , k.

4 Quality representation guarantee

In the following, we give a negative result on the quality of the approximation to the

optimal representation value.

Proposition 2 There exists an instance for an even k, θ =
∑n
i=1 wi =

∑n
i=1 pi and

Wj = j−1
k−1

∑n
i=1 wi, for which, E(Rlex, Y ) = θ, and E(R∗ε , Y ) = θ/(θ − 1) ≈ 1 holds,

where R∗ε denotes an optimal representation with cardinality k in terms of ε-indicator.

Proof Consider an instance with two variables with the following coefficients: p1 = θ−1,

w1 = 1, p2 = 1, w2 = θ − 1. Then, we have that Y = {(0, 0), (θ − 1, 1), (θ, θ)}. For

k = 2 define W1 = 0 and W2 = θ and obtain the following sets

Rlex = {(0, 0), (θ, θ)} (11)

R∗ε = {(0, 0), (θ − 1, 1)} (12)

Then it holds that E(R∗ε , Y ) = θ/(θ − 1) ≈ 1 and E(Rlex, Y ) = θ.
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5 Experimental results

In the following, we describe an experimental analysis to assess the performance of

our approach described in the previous section on a set of benchmark instances. Two

measures are used to characterize its performance, the CPU-time and the representa-

tion value obtained. For comparison purpose, an optimal representation is also com-

puted by solving the corresponding UBCOP to optimality with the original Nemhauser-

Ullman algorithm and, then, applying the dynamic programming algorithm described

in Vaz [18] to extract an optimal representation from set Y .

The implementations were written in C and compiled with clang 7.3.0 using the

optimization flag O2. The tests were run in a computer with operating system OSX

10.11.4, with Intel i5, 2.7 GHz and 16 Gb 1867MHz DDR3 RAM. The instances

were generated with three parameters: problem size (n), representation cardinality

(k) and correlation betwen profits and weight vectors (ρ). Note that the positive (neg-

ative) correlation increases (decreases) the degree of conflict between the two objec-

tives. For this reason, a positive (negative) correlation between weights and profits

should give rise to a large (small) nondominated set. Profit and weight values were

randomly generated according to a uniform distribution in [1, 231/n]. Ten instances

were generated to each combination of the three parameters: ρ = {−0.8, 0.0, 0.8},
n = {200, 400, 600, 800, 1000} and k = {0.1n, 0.4n, 0.7n, n}. The generation of corre-

lated data follows the procedure described in Verel et al. [19].

Table 1 presents the experimental results obtained for the exact approach and

our approach, averaged over the instances considered. We report the mean cardinality

of the non-dominated set (column |Y |). For the exact approach, we report the mean

of the CPU-time in seconds taken to find set Y with the original Nemhauser-Ullman

algorithm (column tNU ) and the overall time to find an optimal representation (column

tNU∗), that is, the time reported in column tNU plus the time taken by the approach

described in Vaz et al. [18]; note that the time to find Y takes less than one minute for

the instances considered, whereas extracting an optimal representation can take almost

one hour for the largest instances. We also report the harmonic mean of the optimal

representation value (column ε∗) as well as the mean of the CPU-time taken by our

modified version of Nemhauser-Ullman algorithm (column tMNU ), the harmonic mean

of the ratio between the cardinality of the representation obtained and k (column

|Rlex|/k), the harmonic mean of the representation value (column ε) and harmonic

mean of the representation ratio (column ε∗/ε).
The results in Table 1 clearly indicate that our modified version of Nemhauser-

Ullman algorithm is faster than the exact approach by several orders of magnitude,

mainly when the correlation is positive. Moreover, the performance of our approach

seems to be independent of the induced correlation and the size of the instances. The

representation quality obtained is also very good, with a representation ratio larger

than 99% in most of the cases. Finally, the cardinality of the representation obtained

is more than 99% of the value of k, which suggest that very few solutions are missed.

Note that the advantage of our approach is only meaningful for k ≤ 0.4n, since it is

possible to obtain the nondominated set with the original Nemhauser-Ullman algorithm

and extract set Rlex in comparable time to our approach for larger values of k; compare

the times reported in column tNU with those in tMNU for different values of k. Figure

1 plots the CPU-time taken by the original Nemhauser-Ullman algorithm (NU) and

our approach for k = n and k = 0.1n for instance sizes from n = 400 up to n = 5000

and correlation equals to 0.8, where the largest times were obtained; the results of our
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ρ n |Y | tNU k tNU∗ ε∗ tMNU |Rlex|/k ε ε∗/ε

-0.8 200 4 151 0.05 20 0.10 1.0217 0.01 1.000 1.0433 0.979
80 0.17 1.0055 0.02 1.000 1.0100 0.995

140 0.24 1.0031 0.04 0.995 1.0070 0.996
200 0.28 1.0022 0.05 0.979 1.0058 0.996

400 15 622 0.31 40 1.21 1.0111 0.04 1.000 1.0205 0.991
160 2.08 1.0028 0.16 0.999 1.0054 0.997
280 2.80 1.0016 0.27 0.994 1.0034 0.998
400 3.36 1.0011 0.41 0.981 1.0035 0.998

600 32 894 1.14 60 5.09 1.0074 0.12 1.000 1.0134 0.994
240 8.41 1.0018 0.49 0.999 1.0036 0.998
420 11.21 1.0011 1.02 0.990 1.0029 0.998
600 13.44 1.0007 2.02 0.981 1.0024 0.998

800 55 177 2.60 80 14.76 1.0055 0.27 1.000 1.0099 0.996
320 23.67 1.0014 1.28 0.998 1.0027 0.999
560 31.17 1.0008 3.51 0.996 1.0020 0.999
800 37.35 1.0006 5.48 0.985 1.0018 0.999

1000 84 153 4.79 100 34.73 1.0044 0.52 1.000 1.0079 0.997
400 54.19 1.0011 2.80 0.999 1.0020 0.999
700 70.54 1.0006 7.51 0.996 1.0016 0.999

1000 84.10 1.0004 11.89 0.983 1.0015 0.999
0.0 200 7 414 0.08 20 0.26 1.0285 0.01 1.000 1.0453 0.984

80 0.43 1.0072 0.03 0.999 1.0113 0.996
140 0.58 1.0041 0.05 0.999 1.0068 0.997
200 0.70 1.0029 0.07 0.986 1.0082 0.995

400 25 435 0.52 40 3.15 1.0144 0.06 1.000 1.0214 0.993
160 5.02 1.0036 0.22 0.999 1.0053 0.998
280 6.52 1.0021 0.38 0.997 1.0037 0.998
400 7.86 1.0014 0.78 0.991 1.0037 0.998

600 54 786 2.05 60 14.29 1.0096 0.17 1.000 1.0140 0.996
240 21.80 1.0024 0.74 0.999 1.0037 0.999
420 27.59 1.0014 1.70 0.997 1.0030 0.998
600 32.89 1.0010 3.33 0.991 1.0027 0.998

800 87 572 4.11 80 38.04 1.0071 0.39 1.000 1.0104 0.997
320 56.79 1.0018 2.07 1.000 1.0026 0.999
560 71.38 1.0010 4.98 0.996 1.0024 0.999
800 84.29 1.0007 8.96 0.992 1.0019 0.999

1000 139 850 8.43 100 98.75 1.0057 0.80 1.000 1.0083 0.997
400 143.50 1.0014 4.63 0.999 1.0021 0.999
700 177.19 1.0008 10.16 0.998 1.0018 0.999

1000 207.34 1.0006 18.72 0.991 1.0016 0.999
0.8 200 19 230 0.20 20 1.51 1.0400 0.02 1.000 1.0497 0.991

80 2.42 1.0100 0.08 1.000 1.0116 0.998
140 3.04 1.0057 0.12 0.999 1.0078 0.998
200 3.59 1.0040 0.20 0.991 1.0080 0.996

400 93 008 2.12 40 38.02 1.0200 0.18 1.000 1.0235 0.997
160 54.97 1.0050 0.68 1.000 1.0057 0.999
280 65.46 1.0029 1.48 0.997 1.0048 0.998
400 74.93 1.0020 2.59 0.995 1.0045 0.998

600 194 479 7.46 60 177.90 1.0134 0.74 1.000 1.0154 0.998
240 250.49 1.0034 2.94 1.000 1.0038 1.000
420 294.17 1.0019 6.34 0.998 1.0033 0.999
600 332.36 1.0013 10.70 0.996 1.0029 0.998

800 394 141 18.66 80 855.14 1.0100 1.73 1.000 1.0115 0.999
320 1168.64 1.0025 8.28 1.000 1.0031 0.999
560 1346.39 1.0014 17.22 0.999 1.0024 0.999
800 1504.93 1.0010 31.03 0.994 1.0022 0.999

1000 546 147 34.87 100 1685.44 1.0080 3.87 1.000 1.0091 0.999
400 2269.41 1.0020 17.73 1.000 1.0023 1.000
700 2608.02 1.0011 40.68 0.998 1.0022 0.999

1000 2885.25 1.0008 78.17 0.996 1.0018 0.999

Table 1 Experimental results (see text for more details)
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Fig. 1 CPU-time taken by the several approaches and corresponding regression lines, with
respect to instance size.

approach for k = n are not shown for n > 3000 since they were above the cut-off time of

5000 seconds. The CPU-time to extract set Rlex from the nondominated set is not taken

into account since it is very neglible. The plot also shows regression (dashed) lines for

each of the three approaches; we have used a cubic regression model as sugested by the

Box-Cox procedure, with R2 = 0.9971 for the original Nemahauser-Ullman algorithm,

and R2 = 0.9997 and R2 = 0.9972 for our approach with k = n and k = 0.1n,

respectively. These models suggest that the algorithms tested on those type of instances

have a cubic running-time with respect to instance size. These experimental results

confirm that our modified version of Nemhauser-Ullman is preferable for smaller values

of k. Note that a small value of k is often seen as a requirement for a representation [14];

in our approach, the representation quality in terms of ε-indicator does not seem to

degrade too much for decreasing values of k, as shown in column ε∗/ε in Table 1.

6 Conclusions and discussion

In this article, we described a modification of the Nemhauser-Ullman algorithm to find

a “good” representation of the non-dominated set in terms of a representation measure

for an unconstrained biobjective combinatorial optimization problem. The techniques

are based on the definition of several constraint values on the range of the weights. Our

theoretical results indicate that the gap between the optimal representation value and

the representation value achieved by this technique can be arbitrarly large. However,
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the experimental results obtained show that this approach is able to perform very well

in terms of CPU-time and representation quality, in a wide range of instances and

mainly for small values of k.

Other targets can be considered, for instance, by taking into account some knowl-

edge of set Y , in particular, the set of supported non-dominated outcome vectors, which

can be computed with the dichotomic search algorithm described in [5]. In this variant,

targets Wj , j = 1, . . . , k, are chosen such that they are equally spaced in the polyline

that connects the supported non-dominated outcome vectors. However, preliminary

experimental results indicate that there is almost no gain in terms of representation

quality and running time [10].

The major drawback of this approach is that small gaps may arise in the repre-

sentation obtained since the desirable cardinality k may not be possible to obtain.

However, in practice, one may re-run the algorithm for slightly different values of k

until an “ungapped” representation is obtained.

Finally, it would be interesting to consider other well-known representation mea-

sures, such as hypervolume indicator, which measures the area of the dominated region,

bounded by a reference point [20]. If the non-dominated outcome vectors are explictly

given, it is possible to find an optimal representation in the bi-objective case in poly-

nomial time [11] as well as to find an approximation in the three-objective case with a

greedy strategy [8]. Other representation measures of interest are uniformity and cov-

erage [14]. However, preliminary experiments indicated that the variants proposed in

this article only obtain good results in some combinations of instance parameters [10].
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